Started following some tutorial on att85 usi. Downloaded example code from make avr book.

This commit is contained in:
Dan
2022-09-20 01:08:01 -04:00
parent d0cbc0000e
commit 361a828c46
295 changed files with 68746 additions and 0 deletions

View File

@@ -0,0 +1,196 @@
##########------------------------------------------------------##########
########## Project-specific Details ##########
########## Check these every time you start a new project ##########
##########------------------------------------------------------##########
MCU = atmega168p
F_CPU = 1000000UL
BAUD = 9600UL
## Also try BAUD = 19200 or 38400 if you're feeling lucky.
## A directory for common include files and the simple USART library.
## If you move either the current folder or the Library folder, you'll
## need to change this path to match.
LIBDIR = ../../AVR-Programming-Library
##########------------------------------------------------------##########
########## Programmer Defaults ##########
########## Set up once, then forget about it ##########
########## (Can override. See bottom of file.) ##########
##########------------------------------------------------------##########
PROGRAMMER_TYPE = usbtiny
# extra arguments to avrdude: baud rate, chip type, -F flag, etc.
PROGRAMMER_ARGS =
##########------------------------------------------------------##########
########## Program Locations ##########
########## Won't need to change if they're in your PATH ##########
##########------------------------------------------------------##########
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AVRSIZE = avr-size
AVRDUDE = avrdude
##########------------------------------------------------------##########
########## Makefile Magic! ##########
########## Summary: ##########
########## We want a .hex file ##########
########## Compile source files into .elf ##########
########## Convert .elf file into .hex ##########
########## You shouldn't need to edit below. ##########
##########------------------------------------------------------##########
## The name of your project (without the .c)
# TARGET = blinkLED
## Or name it automatically after the enclosing directory
TARGET = $(lastword $(subst /, ,$(CURDIR)))
# Object files: will find all .c/.h files in current directory
# and in LIBDIR. If you have any other (sub-)directories with code,
# you can add them in to SOURCES below in the wildcard statement.
SOURCES=$(wildcard *.c $(LIBDIR)/*.c)
OBJECTS=$(SOURCES:.c=.o)
HEADERS=$(SOURCES:.c=.h)
## Compilation options, type man avr-gcc if you're curious.
CPPFLAGS = -DF_CPU=$(F_CPU) -DBAUD=$(BAUD) -I. -I$(LIBDIR)
CFLAGS = -Os -g -std=gnu99 -Wall
## Use short (8-bit) data types
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
## Splits up object files per function
CFLAGS += -ffunction-sections -fdata-sections
LDFLAGS = -Wl,-Map,$(TARGET).map
## Optional, but often ends up with smaller code
LDFLAGS += -Wl,--gc-sections
## Relax shrinks code even more, but makes disassembly messy
## LDFLAGS += -Wl,--relax
## LDFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
## LDFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
TARGET_ARCH = -mmcu=$(MCU)
## Explicit pattern rules:
## To make .o files from .c files
%.o: %.c $(HEADERS) Makefile
$(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c -o $@ $<;
$(TARGET).elf: $(OBJECTS)
$(CC) $(LDFLAGS) $(TARGET_ARCH) $^ $(LDLIBS) -o $@
%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@
%.eeprom: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
%.lst: %.elf
$(OBJDUMP) -S $< > $@
## These targets don't have files named after them
.PHONY: all disassemble disasm eeprom size clean squeaky_clean flash fuses
all: $(TARGET).hex
debug:
@echo
@echo "Source files:" $(SOURCES)
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
@echo
# Optionally create listing file from .elf
# This creates approximate assembly-language equivalent of your code.
# Useful for debugging time-sensitive bits,
# or making sure the compiler does what you want.
disassemble: $(TARGET).lst
disasm: disassemble
# Optionally show how big the resulting program is
size: $(TARGET).elf
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
clean:
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
$(TARGET).eeprom
squeaky_clean:
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~ *.eeprom
##########------------------------------------------------------##########
########## Programmer-specific details ##########
########## Flashing code to AVR using avrdude ##########
##########------------------------------------------------------##########
flash: $(TARGET).hex
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
## An alias
program: flash
flash_eeprom: $(TARGET).eeprom
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
avrdude_terminal:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
## If you've got multiple programmers that you use,
## you can define them here so that it's easy to switch.
## To invoke, use something like `make flash_arduinoISP`
flash_usbtiny: PROGRAMMER_TYPE = usbtiny
flash_usbtiny: PROGRAMMER_ARGS = # USBTiny works with no further arguments
flash_usbtiny: flash
flash_usbasp: PROGRAMMER_TYPE = usbasp
flash_usbasp: PROGRAMMER_ARGS = # USBasp works with no further arguments
flash_usbasp: flash
flash_arduinoISP: PROGRAMMER_TYPE = avrisp
flash_arduinoISP: PROGRAMMER_ARGS = -b 19200 -P /dev/ttyACM0
## (for windows) flash_arduinoISP: PROGRAMMER_ARGS = -b 19200 -P com5
flash_arduinoISP: flash
flash_109: PROGRAMMER_TYPE = avr109
flash_109: PROGRAMMER_ARGS = -b 9600 -P /dev/ttyUSB0
flash_109: flash
##########------------------------------------------------------##########
########## Fuse settings and suitable defaults ##########
##########------------------------------------------------------##########
## Mega 48, 88, 168, 328 default values
LFUSE = 0x62
HFUSE = 0xdf
EFUSE = 0x00
## Generic
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
$(PROGRAMMER_ARGS) $(FUSE_STRING)
show_fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
## Called with no extra definitions, sets to defaults
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
set_default_fuses: fuses
## Set the fuse byte for full-speed mode
## Note: can also be set in firmware for modern chips
set_fast_fuse: LFUSE = 0xE2
set_fast_fuse: FUSE_STRING = -U lfuse:w:$(LFUSE):m
set_fast_fuse: fuses
## Set the EESAVE fuse byte to preserve EEPROM across flashes
set_eeprom_save_fuse: HFUSE = 0xD7
set_eeprom_save_fuse: FUSE_STRING = -U hfuse:w:$(HFUSE):m
set_eeprom_save_fuse: fuses
## Clear the EESAVE fuse byte
clear_eeprom_save_fuse: FUSE_STRING = -U hfuse:w:$(HFUSE):m
clear_eeprom_save_fuse: fuses

View File

@@ -0,0 +1,31 @@
/*
A simple test of serial-port functionality.
Takes in a character at a time and sends it right back out,
displaying the ASCII value on the LEDs.
*/
// ------- Preamble -------- //
#include <avr/io.h>
#include <util/delay.h>
#include "pinDefines.h"
#include "USART.h"
int main(void) {
char serialCharacter;
// -------- Inits --------- //
LED_DDR = 0xff; /* set up LEDs for output */
initUSART();
printString("Hello World!\r\n"); /* to test */
// ------ Event loop ------ //
while (1) {
serialCharacter = receiveByte();
transmitByte(serialCharacter);
LED_PORT = serialCharacter;
/* display ascii/numeric value of character */
} /* End event loop */
return 0;
}

View File

@@ -0,0 +1,196 @@
##########------------------------------------------------------##########
########## Project-specific Details ##########
########## Check these every time you start a new project ##########
##########------------------------------------------------------##########
MCU = atmega168p
F_CPU = 1000000UL
BAUD = 9600UL
## Also try BAUD = 19200 or 38400 if you're feeling lucky.
## A directory for common include files and the simple USART library.
## If you move either the current folder or the Library folder, you'll
## need to change this path to match.
LIBDIR = ../../AVR-Programming-Library
##########------------------------------------------------------##########
########## Programmer Defaults ##########
########## Set up once, then forget about it ##########
########## (Can override. See bottom of file.) ##########
##########------------------------------------------------------##########
PROGRAMMER_TYPE = usbtiny
# extra arguments to avrdude: baud rate, chip type, -F flag, etc.
PROGRAMMER_ARGS =
##########------------------------------------------------------##########
########## Program Locations ##########
########## Won't need to change if they're in your PATH ##########
##########------------------------------------------------------##########
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AVRSIZE = avr-size
AVRDUDE = avrdude
##########------------------------------------------------------##########
########## Makefile Magic! ##########
########## Summary: ##########
########## We want a .hex file ##########
########## Compile source files into .elf ##########
########## Convert .elf file into .hex ##########
########## You shouldn't need to edit below. ##########
##########------------------------------------------------------##########
## The name of your project (without the .c)
# TARGET = blinkLED
## Or name it automatically after the enclosing directory
TARGET = $(lastword $(subst /, ,$(CURDIR)))
# Object files: will find all .c/.h files in current directory
# and in LIBDIR. If you have any other (sub-)directories with code,
# you can add them in to SOURCES below in the wildcard statement.
SOURCES=$(wildcard *.c $(LIBDIR)/*.c)
OBJECTS=$(SOURCES:.c=.o)
HEADERS=$(SOURCES:.c=.h)
## Compilation options, type man avr-gcc if you're curious.
CPPFLAGS = -DF_CPU=$(F_CPU) -DBAUD=$(BAUD) -I. -I$(LIBDIR)
CFLAGS = -Os -g -std=gnu99 -Wall
## Use short (8-bit) data types
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
## Splits up object files per function
CFLAGS += -ffunction-sections -fdata-sections
LDFLAGS = -Wl,-Map,$(TARGET).map
## Optional, but often ends up with smaller code
LDFLAGS += -Wl,--gc-sections
## Relax shrinks code even more, but makes disassembly messy
## LDFLAGS += -Wl,--relax
## LDFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
## LDFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
TARGET_ARCH = -mmcu=$(MCU)
## Explicit pattern rules:
## To make .o files from .c files
%.o: %.c $(HEADERS) Makefile
$(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c -o $@ $<;
$(TARGET).elf: $(OBJECTS)
$(CC) $(LDFLAGS) $(TARGET_ARCH) $^ $(LDLIBS) -o $@
%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@
%.eeprom: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
%.lst: %.elf
$(OBJDUMP) -S $< > $@
## These targets don't have files named after them
.PHONY: all disassemble disasm eeprom size clean squeaky_clean flash fuses
all: $(TARGET).hex
debug:
@echo
@echo "Source files:" $(SOURCES)
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
@echo
# Optionally create listing file from .elf
# This creates approximate assembly-language equivalent of your code.
# Useful for debugging time-sensitive bits,
# or making sure the compiler does what you want.
disassemble: $(TARGET).lst
disasm: disassemble
# Optionally show how big the resulting program is
size: $(TARGET).elf
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
clean:
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
$(TARGET).eeprom
squeaky_clean:
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~ *.eeprom
##########------------------------------------------------------##########
########## Programmer-specific details ##########
########## Flashing code to AVR using avrdude ##########
##########------------------------------------------------------##########
flash: $(TARGET).hex
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
## An alias
program: flash
flash_eeprom: $(TARGET).eeprom
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
avrdude_terminal:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
## If you've got multiple programmers that you use,
## you can define them here so that it's easy to switch.
## To invoke, use something like `make flash_arduinoISP`
flash_usbtiny: PROGRAMMER_TYPE = usbtiny
flash_usbtiny: PROGRAMMER_ARGS = # USBTiny works with no further arguments
flash_usbtiny: flash
flash_usbasp: PROGRAMMER_TYPE = usbasp
flash_usbasp: PROGRAMMER_ARGS = # USBasp works with no further arguments
flash_usbasp: flash
flash_arduinoISP: PROGRAMMER_TYPE = avrisp
flash_arduinoISP: PROGRAMMER_ARGS = -b 19200 -P /dev/ttyACM0
## (for windows) flash_arduinoISP: PROGRAMMER_ARGS = -b 19200 -P com5
flash_arduinoISP: flash
flash_109: PROGRAMMER_TYPE = avr109
flash_109: PROGRAMMER_ARGS = -b 9600 -P /dev/ttyUSB0
flash_109: flash
##########------------------------------------------------------##########
########## Fuse settings and suitable defaults ##########
##########------------------------------------------------------##########
## Mega 48, 88, 168, 328 default values
LFUSE = 0x62
HFUSE = 0xdf
EFUSE = 0x00
## Generic
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
$(PROGRAMMER_ARGS) $(FUSE_STRING)
show_fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
## Called with no extra definitions, sets to defaults
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
set_default_fuses: fuses
## Set the fuse byte for full-speed mode
## Note: can also be set in firmware for modern chips
set_fast_fuse: LFUSE = 0xE2
set_fast_fuse: FUSE_STRING = -U lfuse:w:$(LFUSE):m
set_fast_fuse: fuses
## Set the EESAVE fuse byte to preserve EEPROM across flashes
set_eeprom_save_fuse: HFUSE = 0xD7
set_eeprom_save_fuse: FUSE_STRING = -U hfuse:w:$(HFUSE):m
set_eeprom_save_fuse: fuses
## Clear the EESAVE fuse byte
clear_eeprom_save_fuse: FUSE_STRING = -U hfuse:w:$(HFUSE):m
clear_eeprom_save_fuse: fuses

View File

@@ -0,0 +1,50 @@
## Scripting in python to drive the serial-port organ
## So far, the "protocol" is simple.
## Python routine sends a note, waits for a return character, then sends next, etc.
## Organ listens for notes, when it gets one sends an 'N' to say it's ready
import serial
def playString(noteString, serialPort):
for letter in noteString:
print(letter)
serialPort.write(letter.encode())
returnValue = serialPort.read(1)
if __name__ == "__main__":
import time
from urllib.request import urlopen
## Need to consider alternatives for Mac / Windows
## list all serial ports being used: python -m serial.tools.list_ports
PORT = "/dev/ttyUSB0" # Change this to the current serial port being used
BAUD = 9600
s = serial.Serial(PORT, BAUD)
s.flush()
## flush clears the buffer so that we're starting fresh
## More on serial buffers later.
## An intentional example. You can use this for playing music on purpose.
playString("f g h j k l ; ]'[", s)
input("Press enter for next demo\n")
## A fun / stupid example. You can just type stuff and see what comes out.
playString("hello there, this is a random string turned into 'music'", s)
input("Press enter for next demo\n")
## Website no longer alive... skipping:
## A really frivolous example. Play websites!
## Bonus points for first person to tweet themselves a song.
#print ("Downloading song data from http://serialorgansongs.jottit.com/...")
#import re
#contentFilter = re.compile(r'<p>(.*?)</p>')
#songSite = urlopen("http://serialorgansongs.jottit.com/").read()
#songText = contentFilter.findall(songSite)[0]
#playString(songText, s)
## Or interactive
mySong = input("\nType in your own song: ")
playString(mySong, s)

View File

@@ -0,0 +1,26 @@
/*
Simple routines to play notes out to a speaker
*/
#include <avr/io.h>
#include <util/delay.h>
#include "organ.h"
#include "pinDefines.h"
void playNote(uint16_t period, uint16_t duration) {
uint16_t elapsed;
uint16_t i;
for (elapsed = 0; elapsed < duration; elapsed += period) {
/* For loop with variable delay selects the pitch */
for (i = 0; i < period; i++) {
_delay_us(1);
}
SPEAKER_PORT ^= (1 << SPEAKER);
}
}
void rest(uint16_t duration) {
do {
_delay_us(1);
} while (--duration);
}

View File

@@ -0,0 +1,9 @@
// ------------- Function prototypes -------------- //
// Plays a note for the given duration. None of these times are
// calibrated to actual notes or tempi. It's all relative to TIMEBASE.
void playNote(uint16_t period, uint16_t duration);
// Does nothing for a time equal to the passed duration.
void rest(uint16_t duration);

View File

@@ -0,0 +1,99 @@
// Scale in the key of 25000
// Automatically generated by scaleGenerator.py
#define C0 25000
#define Cx0 23597
#define D0 22272
#define Dx0 21022
#define E0 19843
#define F0 18729
#define Fx0 17678
#define G0 16685
#define Gx0 15749
#define A0 14865
#define Ax0 14031
#define B0 13243
#define C1 12500
#define Cx1 11798
#define D1 11136
#define Dx1 10511
#define E1 9921
#define F1 9364
#define Fx1 8839
#define G1 8343
#define Gx1 7875
#define A1 7433
#define Ax1 7015
#define B1 6622
#define C2 6250
#define Cx2 5899
#define D2 5568
#define Dx2 5256
#define E2 4961
#define F2 4682
#define Fx2 4419
#define G2 4171
#define Gx2 3937
#define A2 3716
#define Ax2 3508
#define B2 3311
#define C3 3125
#define Cx3 2950
#define D3 2784
#define Dx3 2628
#define E3 2480
#define F3 2341
#define Fx3 2210
#define G3 2086
#define Gx3 1969
#define A3 1858
#define Ax3 1754
#define B3 1655
#define C4 1562
#define Cx4 1474
#define D4 1392
#define Dx4 1313
#define E4 1240
#define F4 1170
#define Fx4 1105
#define G4 1043
#define Gx4 984
#define A4 929
#define Ax4 877
#define B4 827
#define C5 781
#define Cx5 737
#define D5 696
#define Dx5 657
#define E5 620
#define F5 585
#define Fx5 552
#define G5 521
#define Gx5 492
#define A5 464
#define Ax5 438
#define B5 414
#define C6 390
#define Cx6 368
#define D6 347
#define Dx6 328
#define E6 310
#define F6 292
#define Fx6 276
#define G6 260
#define Gx6 246
#define A6 232
#define Ax6 219
#define B6 207
#define C7 195
#define Cx7 184
#define D7 174
#define Dx7 164
#define E7 155
#define F7 146
#define Fx7 138
#define G7 130
#define Gx7 123
#define A7 116
#define Ax7 109
#define B7 103

View File

@@ -0,0 +1,46 @@
# scaleGenerator.py
# Scales are in terms of times per cycle (period) rather
# than pitch.
#
import math
SCALE = ['C', 'Cx', 'D', 'Dx', 'E', 'F', 'Fx', 'G', 'Gx', 'A', 'Ax', 'B']
def calculateOctave(baseLength):
periods = [baseLength / math.exp(x*math.log(2)/12) for x in range(0, 12)]
periods = [int(round(x)) for x in periods]
return( zip(SCALE, periods) )
def makePitches(basePitch, numOctaves):
pitchList = []
for octave in range(0, numOctaves):
for note, period in calculateOctave(basePitch / 2**octave):
if period < 65500:
noteString = note + str(octave)
pitchList.append((noteString,period))
return(pitchList)
def makeDefines(basePitch, numOctaves):
pitchList = makePitches(basePitch, numOctaves)
defineString = "// Scale in the key of {} \n".format(basePitch)
defineString += "// Automatically generated by scaleGenerator.py \n\n"
for (note, length) in pitchList:
defineString += "#define {:<5}{:>6}\n".format(note, length)
return(defineString)
if __name__ == "__main__":
## Change these if you like
BASEPITCH = 25000
OCTAVES = 8
OUTFILE = "scale16.h"
## Write it out to a file
out = open(OUTFILE, "w")
out.write(makeDefines(BASEPITCH, OCTAVES))
out.close()

View File

@@ -0,0 +1,74 @@
/*
serialOrgan.c
Reads a character in serial from the keyboard, plays a note.
See organ.h for pin defines and other macros
See organ.c (and include it in the Makefile) for playNote() and rest()
*/
// ------- Preamble -------- //
#include <avr/io.h>
#include <util/delay.h>
#include "organ.h"
#include "scale16.h"
#include "pinDefines.h"
#include "USART.h"
#define NOTE_DURATION 0xF000 /* determines long note length */
int main(void) {
// -------- Inits --------- //
SPEAKER_DDR |= (1 << SPEAKER); /* speaker for output */
initUSART();
printString("----- Serial Organ ------\r\n");
char fromCompy; /* used to store serial input */
uint16_t currentNoteLength = NOTE_DURATION / 2;
const uint8_t keys[] = { 'a', 'w', 's', 'e', 'd', 'f', 't',
'g', 'y', 'h', 'j', 'i', 'k', 'o',
'l', 'p', ';', '\''
};
const uint16_t notes[] = { G4, Gx4, A4, Ax4, B4, C5, Cx5,
D5, Dx5, E5, F5, Fx5, G5, Gx5,
A5, Ax5, B5, C6
};
uint8_t isNote;
uint8_t i;
// ------ Event loop ------ //
while (1) {
/* Get Key */
fromCompy = receiveByte(); /* waits here until there is input */
transmitByte('N'); /* alert computer we're ready for next note */
/* Play Notes */
isNote = 0;
for (i = 0; i < sizeof(keys); i++) {
if (fromCompy == keys[i]) { /* found match in lookup table */
playNote(notes[i], currentNoteLength);
isNote = 1; /* record that we've found a note */
break; /* drop out of for() loop */
}
}
/* Handle non-note keys: tempo changes and rests */
if (!isNote) {
if (fromCompy == '[') { /* code for short note */
currentNoteLength = NOTE_DURATION / 2;
}
else if (fromCompy == ']') { /* code for long note */
currentNoteLength = NOTE_DURATION;
}
else { /* unrecognized, just rest */
rest(currentNoteLength);
}
}
} /* End event loop */
return 0;
}